
The integration of the sum of measurable positive functions.

Let (X,M, µ) be a measure space and let f and g be two positive measurable functions. We will

prove that the integration of f + g is the same as the sum of the integration of f and g, where the

integration of positive measurable functions is defined as in Rudin book.

Remark: This result is not trivial at all. In Rudin’s book, such heavy machinery as the Lebesgue

Montone Convergence Theorem is used to prove this result.

Here we will give a relative rudimentary, but not simple, proof from the definitions.

In fact, during the class, using the defition of integrations of positive measurable functions, which

says that ∫
X

f dµ =

{∫
X

s dµ : s is simple, 0 ≤ s ≤ f

}
and ∫

X

g dµ =

{∫
X

s dµ : s is simple, 0 ≤ s ≤ g

}
,

considering all the simple functions fn and gn, satisfying 0 ≤ fn ≤ g and 0 ≤ gn ≤ g, and noting that it

then follows 0 ≤ fn + gn ≤ f + g, we already proved the following proposition.

Prop 1. Let (X,M, µ) be a measure space and let f and g be two positive measurable functions.

Then ∫
X

f + g dµ ≥
∫
X

f dµ+

∫
X

g dµ.

Remark: In fact, Prop. 1 still holds (under the same proof as done in class) if we ask f and g to

be “positive” functions instead of “positive and measurable” functions (why?).

Now, we will prove the following:

Prop 2. Let (X,M, µ) be a measure space and let f and g be two positive measurable functions.

Then ∫
X

f + g dµ =

∫
X

f dµ+

∫
X

g dµ.

Proof: It remains to show ∫
X

f + g dµ ≤
∫
X

f dµ+

∫
X

g dµ.
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We just need to prove the inequality above for those f and g satisfying: for any simple functions

fn, gn and sn satisfying 0 ≤ fn ≤ f , 0 ≤ gn ≤ g and 0 ≤ sn ≤ f + g, the integrations of simple functions

fn, gn and sn are all finite.

In fact, if not, assume the integration of simple functions fn or gn above is inifinite. Then it follows

that
∫
X
f dµ or

∫
X
g dµ is +∞. Then we definitely have

∫
X

f + g dµ ≤
∫
X

f dµ+

∫
X

g dµ.

If the the integration of the simple function sn above is +∞, we will show that the inequality is still

true. Assume sn =
∑K

i=1 λiχEi
where each λi > 0.

As the integration of sn is infinite, without loss of generality, we assume that µ(E1) = ∞. Then

f + g ≥ λ1 > 0 on E1. Let f ′ = min{f, 1} and g′ = 1 − f ′ (or equivalently, g′ = max{1 − f, 0}). It

follows that 0 ≤ f ′ ≤ f , 0 ≤ g′ ≤ g and f ′ + g′ = 1. According to problem 4 of HW no. 5, we have

∫
X

f ′ dµ+

∫
X

g′ dµ = ∞,

which then implies that ∫
X

f dµ+

∫
X

g dµ = ∞.

Thus the inequality ∫
X

f + g dµ ≤
∫
X

f dµ+

∫
X

g dµ

still holds in this case.

Now, we can just assume (why?) that for all F ∈ {f, g, f + g},

∫
X

F dµ = sup
{∫

X

s dµ : s is simple, 0 ≤ s ≤ F and s > 0 holds on a set of finite measure
}
.

Under this assumption ,we will show that

∫
X

f + g dµ ≤
∫
X

f dµ+

∫
X

g dµ.

That is, for any simple function s with 0 ≤ s ≤ f + g and s > 0 holds on a set of finite measure, we
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have ∫
X

f + g dµ ≤
∫
X

f dµ+

∫
X

g dµ.

Use E to denote {x ∈ X : s(x) > 0}. Then µ(E) < ∞.

Let h1 = min(f, s) and let h2 = s − h1 (or equivalently, h2 = max(s − f, 0)). One can then check

that 0 ≤ h1 ≤ f . When f(x) < s(x), h2(x) = s(x)− f(x) ≤ g(x). When f(x) ≥ s(x), h2(x) = 0 ≤ g(x).

Then we can conclude that 0 ≤ h2 ≤ g. From the definition of initegrations, it follows that

∫
X

h1 dµ ≤
∫
X

f dµ and
∫
X

h2 dµ ≤
∫
X

g dµ.

Note that s is zero outside E. As h1 + h2 = s and both h1 and h2 are positive, it follows that

0 ≤ hi ≤ s for i = 1, 2. As s is bounded, so is h1 and h2. As s is zero outside E, so is h1 and h2.

Recall that in case the measure space is of finite measure and two measurable positive functions

are bounded, we have proved (in Quiz no. 2) that the integration of their sum equals the sum of the

integration of the functions. Then we have

∫
X

s dµ =

∫
X

χE · s dµ

=

∫
E

s dµ

=

∫
E

h1 + h2 dµ

=

∫
E

h1 dµ+

∫
E

h2 dµ [ because µ(E) < ∞ and |hi| are bounded ]

=

∫
X

h1 dµ+

∫
X

h2 dµ

≤
∫
X

f dµ+

∫
X

g dµ,

which finishes the proof.

Q.E.D.

Remark: Based on this result, for any f, g ∈ L1(X,M, µ), we can show (already done in class) that

∫
X

f + g dµ =

∫
X

f dµ+

∫
X

g dµ.
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